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Abstract. When modeling physical processes in spatially confined do-
mains, the boundaries require distinct consideration through specifying
appropriate boundary conditions (BCs). The finite volume neural net-
work (FINN) is an exception among recent physics-aware neural network
models: it allows the specification of arbitrary BCs. FINN is even able to
generalize to modified BCs not seen during training, but requires them
to be known during prediction. However, so far even FINN was not able
to handle unknown BC values. Here, we extend FINN in order to infer
BC values on-the-fly. This allows us to apply FINN in situations, where
the BC values, such as the inflow rate of fluid into a simulated medium,
is unknown. Experiments validate FINN’s ability to not only infer the
correct values, but also to model the approximated Burgers’ and Allen-
Cahn equations with higher accuracy compared to competitive pure ML
and physics-aware ML models. Moreover, FINN generalizes well beyond
the BC value range encountered during training, even when trained on
only one fixed set of BC values. Our findings emphasize FINN’s abil-
ity to reveal unknown relationships from data, thus offering itself as a
process-explaining system.

Keywords: Physics-aware neural networks - Boundary conditions - Ret-
rospective inference - Partial differential equations - Inductive biases.

1 Introduction

Physics-informed machine learning incorporates physical knowledge as inductive
biases [1], providing significant advantages in terms of generalization and data
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efficiency when contrasted with pure machine learning systems (ML) applied
to physical domains [8,15]. Moreover, inductive biases often help ML models
play down their “technical debt” [16], reducing model complexity while improv-
ing model explainability. Several recently proposed approaches augment neural
networks with physical knowledge [5,9,10,17,18]. But these models do neither
allow including or structurally capturing explicitly defined physical equations,
nor do they generalize to unseen initial and boundary conditions [15]. The re-
cently introduced finite volume neural network (FINN) [7,14] accounts for both:
it combines the learning abilities of artificial neural networks with physical and
structural knowledge from numerical simulations by modeling partial differential
equations (PDEs) in a mathematically compositional manner. So far, FINN is
the only physics-aware neural network that can handle boundary conditions that
were not considered during training.

Nonetheless, the boundary conditions (BCs) need to be known and presented
to all these networks explicitly. To date, not even FINN can predict processes,
where the boundary conditions are completely unknown. In realistic applica-
tion scenarios, however, a quantity of interest is measured for a specific, limited
region only. The amount of the quantity that flows into the observed volumes
through boundaries are notoriously unknown and impossible to predict. One ex-
ample is weather forecasting: a prediction system observes e.g. precipitation or
cloud density for a limited area. Incoming weather dynamics from outside of the
observed region that strongly control the processes inside the domain cannot
be incorporated, turning into one of the main error sources in the numerical
simulations.

Here, we present an approach to infer the explicitly modeled BC values of
FINN on-the-fly, while observing a particular spatiotemporal process. The ap-
proach is based on a retrospective inference principle [2,13], which applies a pre-
diction error-induced gradient signal to adapt the BC values of a trained FINN
model. Only very few data points are required to find boundary conditions that
best explain the recently observed process dynamics and, moreover, to predict
the process henceforth with high accuracy in closed-loop. We compare the qual-
ity of the inferred boundary conditions and the prediction error of FINN with
two state-of-the-art architectures, namely, DISTANA [6] and PhyDNet [5]. Our
results indicate that FINN is the only architecture that reliably infers BC values
and outperforms all competitors on predicting non-linear advection-diffusion-
reaction processes when the BC values are unknown.

2 Finite Volume Neural Network

The finite volume neural network (FINN) introduced in [7,14] is a physics-aware
neural network model that combines the well-established finite volume method
(FVM) [11] as an inductive bias with the learning abilities of deep neural net-
works. FVM discretizes a continuous partial differential equation (PDE) spa-
tially into algebraic equations over a finite number of control volumes. These
volumes have states and exchange fluxes via a clear mathematical structure.
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The enforced physical processing within the FVM structure constrains FINN
to implement (partially) known physical-laws, resulting in an interpretable, well
generalizing, and robust method.

2.1 Architecture

FINN solves PDEs that express non-linear spatiotemporal advection-diffusion-
reaction processes, such as formulated in [7] as

ou 0%u Oou
i D(u)@ — v(u)% + q(u), (1)

where u is the state or the unknown function of time ¢ and spatial coordinate x.
The objective of a PDE solver (if the PDE was fully known) is to find the value
of u in all time steps and spatial locations. However, Equation 1 is composed by
three, often unknown functions of u, i.e. D, v, and q. D is the diffusion coefficient,
which controls the equillibration between high and low concentrations, v is the
advection velocity, which represents the movement of concentration due to the
bulk motion of a fluid, and g is the source/sink term, which increases or decreases
the quantity of u locally. These unknown functions are approximated by neural
network modules, which imitate the structure of Equation 1 applying it to a set
of spatially discretized control volumes. Figure 1 and Equation 2 illustrate how
FINN models the PDE for a single control volume 7. The first- and second-order
spatial derivatives (%7 g%), for example, can be approximated with a linear
layer, @ar, aiming to learn the FVM stencil, i.e. the exchange terms between
adjacent volumes. Furthermore, and in order to account for the structure of
Equation 1, FINN introduces two kernels that are applied on each control volume
with index i—similar to how convolution kernels are shifted over an input image.
First, the flux kernel 7 = f_ + f; models both the diffusive D(u)% and the
advective flux v(u)%, respectively, via the feedforward network modules ¢p and
4. Second, the state kernel & models the source/sink term ¢ for each volume.
All modules’ outputs are summed up to conclude in %, which results in a system
of ODEs with respect to time that is solved by NODE [3]. Accordingly, FINN

predicts » in time step (¢t 4+ 1), that is 4t and the error is computed via

L(ﬂ§t+1),u§t+1)), where i corresponds to the discretized spatial control volume
index and L is the mean squared error. FINN operates entirely in a closed-
loop manner, i.e. only u(*=9 is fed into the model to unroll a prediction &™)
into the future, with sequence length T'. The connection scheme of the different
kernels and modules ensures compliance with fundamental physical rules, such
that advection can spatially propagate exclusively to the left or to the right. Note
that we only consider one-dimensional problems in this work, although FINN
can also be applied to higher-dimensional equations. The reader is referred to
[7] and [14] for an in-depth depiction of the model.
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Fig. 1: The composition of the modules to represent and learn different parts of
an advection-diffusion equation. Figure from [7].
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2.2 Boundary Condition Inference

The specification of boundary conditions (BCs) is required to obtain a unique
solution of a PDE. Common BCs are Dirichlet (fixed values for u), periodic
(quantity leaving the field on the left enters on the right side), or Neumann
(the derivative of u is specified at the boundary). In contrast to state-of-the-art
physics-aware neural networks [5,10,15,19], FINN allows the explicit formulation
of a desired BC. Thus, FINN can deal with not only simple boundary conditions
(Dirichlet or periodic) but also more complicated ones (e.g. Neumann) [7]. This
study applies constant Dirichlet BCs, while we leave the in-depth exploration of
other BCs for future research.

FINN uses the boundary conditions strictly. The solid implementation of a
BC type (Dirichlet, periodic, Neumann) paves the way for the model to read out
an unknown/unseen BC value of a given dataset. So far, however, it was unfea-
sible not to use an explicit BC for solving a PDE. However, novel ML models
reinforced by inductive biases can extract essential information from data. FINN
is an ML model that is predestined for this purpose, as it is tailored to conve-
niently implement various BC types and values for different PDEs. Accordingly,
it is able to learn which BC values best describe a specific dataset—during both
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training and prediction. Here we show that it is possible to infer BC values in a
much larger range via retrospective inference.

From a broader perspective, the need for BCs is often a modeling artifact
for real-world problems—simply because we do not have the means to simulate
an entire system but need to restrict ourselves to a bounded subdomain. Even
if these boundaries do not exist in the original system, our resulting model
needs to identify their conditions for accurate forecasting. Our aim is to infer
appropriate BCs and their values quickly, accurately, and reliably. Technically,
a BC value is inferred by setting it as a learnable parameter and projecting the
prediction error over a defined temporal horizon onto this parameter. Intuitively,
the determination of the BC values can thus be described as an optimization
problem where the BC value instead of the network weights are subject for
optimization.

3 Equations

We performed experiments on two different PDEs and will first introduce these
equations to later report the respective experiments and results.

3.1 Burgers’ Equation

Burgers’ equation is frequently used in different research fields to model e.g.
fluid dynamics, nonlinear acoustics, or gas dynamics [4,12], and is a practical
toy example formulated as a 1D equation in this work as

U U 2u
%ﬁ = —v(u)% + D%7 (3)
where u is the unknown function and v(u) is the advective velocity, which is
defined as an identity function v(u) = u. The diffusion coefficient D is set to
0.01/7 in data generation. During training, Burgers’ equation has constant values
on the left and right boundaries defined as u(—1,t) = u(1,t) = 0. However,
these were modified to take different symmetric values at inference in order to
assess the ability of the different models to cope with such variations. The initial
condition is defined as u(z,0) = — sin(7z).

3.2 Allen-Cahn Equation

Allen-Cahn is chosen and also defined as a 1D equation that could have peri-
odic or constant boundary conditions. It is typically applied to model phase-
separation in multi-component alloy systems and has also been used in [15] to
analyse the performance of their physics-informed neural network (PINN). The
equation is defined as

Ju 0%u

=D

e 922 + R(u), (4)
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where the reaction term takes the form R(u) = 5u—>5u3. The diffusion coefficient
is set to D = 0.05, which is significantly higher than in [7] where it was set to
D = 107%. The reason for this decision is to scale up the diffusion relative to the
reaction, such that a stronger effect of the BCs is more apparent.

4 Experiments

We have conducted two different experiments. First, the ability to learn BC
values during training is studied in Section 4.1. Afterwards, we analyze the ability
of the pre-trained models to infer unknown BC values in Section 4.2. Data was
generated with numerical simulation using the Finite Volume Method, similarly
to [7].

4.1 Learning with Fixed Unknown Boundary Conditions

This experiment is conducted in order to discover whether it is possible for
the model to approximate the boundary conditions of the given dataset. It can
be utmost useful in real-world-datasets to determine the unknown BC values
simultaneously while training the model.

The learnt BC values shown in Table 1 suggest that it is not even slightly
possible for DISTANA and PhyDNet to infer reasonable BC values. Also for
FINN, the problem is non-trivial. The complex nature of the equations com-
bined with large-range BC values yield a challenging optimization problem, in
which gradient-based approaches can easily end-up in local minima. Addition-
ally, the fact that FINN uses NODE [3] to integrate the ODE, may, for example,
lead to the convergence into a stiff system. In preliminary experiments, we have
realized that the usage of shorter sequences actually helped identifying the cor-
rect BC values. Moreover, a sufficiently large learning rate was advantageous.
The shape of the generated training data was (256, 49), where N, = 49 specifies
the discretized spatial locations and Ny = 256 the number of simulation steps. To
train FINN, we only used the first 30 time steps of a sequence. As a result, FINN
identifies the correct BCs and—although this was not necessarily the goal—even
yields a lower test error for the entire 256 time steps of the sequence, even though
it was trained on only the first 30. Neither PhyDNet nor DISTANA offer the
option to meaningfully implement boundary conditions. Accordingly, they are
simply fed into the model on the edges of the simulation domain. The missing
inductive bias of how to use these BC values prevent the models to determine the
correct BC values (c.f. Table 1). Nevertheless, both PhyDNet and DISTANA can
approximate the equation fairly correct (albeit not reaching FINN’s accuracy),
even when the determined BC values deviate from the true values. The learnt
BC values by the two models do not converge to any point and persist around the
initial values which are [0.5, —0.5] for Burgers’ and [—0.5,0.5] for Allen-Cahn.
Similarly, they remain around 0 when we set the initial BC values to 0. This
suggests that PhyDNet and DISTANA did not consider the BC values at all. On
the other hand, FINN appears to benefit from the structural knowledge about
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Table 1: Comparison of the training errors and the learnt BC values of all models.
For each trial the average results over 5 repeats are presented. Burgers’ dataset
BC = [1.0,—1.0] and Allen-Cahn dataset BC = [-1.0,1.0].

Eqn. Model Training error Learnt BC
‘»  DISTANA (4.14 £2.07) x 107° [0.61 £ 0.05, —0.61 £ 0.03]
go PhyDNet 1.04 x 10—4 £6.68 x 107° [0.51 £0.18, —0.40 £ 0.26]
Ca FINN (9.58 4 9.94) x 1078 [1.0004 + 0.0002, —1.0004 % 0.0002]
. - DISTANA 1.64 x 107° £7.93 x 1076 [~0.54 £ 0.02,0.53 £ 0.02]
<L < PhyDNet (4.50 £ 2.17) x 107° [-0.59 £0.11,0.44 £+ 0.07]
<O FINN (3.42 4 4.48) x 1077 [—0.99 £ 0.004, 0.99 £ 0.0006]

BCs when determining their values. The BC values in Table 1 converged from
[4.0, —4.0] to [1.0, —1.0], well-maintaining them for the rest of the training (see
first row of Figure 2). As it can be seen on the second row of Figure 2, FINN
also manages to infer BC values for Allen-Cahn in a larger range. In Figure 2,
FINN shows its ability to neither overshoot nor undershoot. As we used syn-
thetic data in this study, we knew what the true BC values were. However, it
would be possible to trust FINN, even when the BC values are unknown to the
researcher—as the correct BC values are learnt, the gradients of the boundary
conditions converge to 0, maintaining the accurate BC well (see the right plots
of Figure 2).

Convergence of the BC's Convergence of the Gradients of the BC's
4 —— left BC 0.015 —— left BC gradient
— right BC 0.010 —— right BC gradient
(%] 2 "
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Fig. 2: Convergence of the boundary conditions and their gradients during train-
ing in FINN. The dataset BC = [1.0, —1.0] for Burgers’ on the first row. On the
second row for Allen-Cahn with BC = [—6.0, 6.0].
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Table 2: Comparison of multi-batch training and prediction errors along with the
inferred BC values by the corresponding models. The experiments were repeated
5 times for each trial and the average results are presented. Burgers’ dataset BC
= [3.0,—3.0] and Allen-Cahn dataset BC = [—1.0, 1.0].

Egn. Model Training error Test error Inferred BC

£ DISTANA (394+1.2)x 107°  3.19+0.14 [4.441.12, 4.0 £ 1.27]
%" PhyDNet (1.9+£1.0) x 107*  4.04£0.29 [3.6 +2.03, —4.4 & 2.49]
@  FINN (1.54+1.3) x 1077 0.05 £ 0.02 [3.1+0.06, —3.1 4 0.06]
( [
? [

S

DISTANA 7.64+4.4) x 107°  0.05%0.02 1.040.18,3.2 £ 2.30]
PhyDNet 1x107*+6x107%  0.0940.07 1.240.52,0.2 £ 0.45)
FINN 2.6+£3.7) x 107° (8 £ 8) x 107° [~0.99 + 0.006,0.99 %+ 0.005]

Allen-
Cahn

4.2 Boundary Condition Inference with Trained Models

The main purpose of this experiment is to investigate the possibility to infer an
unknown BC value after having trained a model on a particular BC value. In
accordance with this purpose, we examined two different training algorithms,
while applying the identical inference process when evaluating the BC inference
ability of the trained models.

Multi-Batch Training and Inference Ten different sequences with randomly
sampled BC values from the ranges [—1, 1] for Burgers’ and [—0.3, 0.3] for Allen-
Cahn equation were used as training data. Thus, the models have the opportunity
to learn the effect of different BC values, allowing the weights to be adjusted
accordingly.

During inference, the models had to infer BC values outside of the respective
ranges when observing 30 simulation steps. The rest of the dataset, that is, the
remaining 98 time steps, was used for simulating the dynamics in closed-loop.
As can be seen in Table 2, FINN is superior in this task compared to DISTANA
and PhyDNet. All three models have small training errors, but DISTANA and
PhyDNet mainly fail to infer the correct BC values as well as to predict the
equations accurately. FINN, however, manages to find the correct BC values
with high precision and significantly small deviations. After finding the correct
BC values, FINN manages to predict the equations correctly. Figure 3 shows
how the prediction error changes in different models as the BC range drifts away
from the BC range of the training set. On the other hand, Figure 4 depicts
the predictions of the multi-batch trained models after inference presenting once
again the precision of FINN.

One-Batch Training and Inference In this experiment, the models receive
only one sequence with ¢ = [0, 2], N; = 256 and N, = 49. The BC values of the
dataset are constant and set to [0.0,0.0]. Hence the models do not see how the
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Fig. 3: Average prediction errors of 5 multi-batch trained models for Allen-Cahn-
Equation. Standard deviations of FINN’s averaged errors range from 4 x 1076
to 1 x 1073, Hence it is not possible to see them in the plot.

Table 3: Comparison of one-batch training and prediction errors after inference
along with the BCs inferred by the corresponding models. The experiments were
repeated 5 times for each trial and the average results are presented. Burgers’
dataset BC = [3.0, —3.0] and Allen-Cahn dataset BC = [-1.0, 1.0].

Egn. Model Training error Test error Inferred BC
£ DISTANA (844+1.7)x 1077  4.14+0.82  [-2.54+3.41,3.0+7.31]
%0 PhyDNet 1x107*4+9x107° 5124047 [4.1 £ 3.24,2.5 4 8.36]
@ FINN (1.741.5) x 1077 0.17+40.16  [3.040.01,—3.0 £ 0.01]

L = DISTANA  1x107°£4x107°  0.09+0.03 [-3.8+3.18,0.1+11.2]

£ = PhyDNet (4.8422)x 107  0.08+0.04 [-1.341.23,1.9+1.61]

< O FINN (2944.2) x 107% (1 £1) x 107° [-0.99 & 0.01,0.99 + 0.006]

equations behave under different BC values. This is substantially harder com-
pared to the previous experiment and the results clearly exhibit this (see Ta-
ble 3). Despite low training errors, DISTANA and PhyDNet fail to infer correct
BC values. The prediction errors when testing in closed-loop after BC inference
also indicate that these models have difficulties solving the task. FINN manages
to infer the correct BC values, but also its prediction error increases significantly
when compared to the training error. Nonetheless, FINN still infers the correct
BC values and produces the lowest test error. These results demonstrate that
the networks largely benefit from sequences with various BC values, enabling
them to infer and predict the same equations over a larger range of novel BCs.
While we only report the results of one set of boundary conditions for each ex-
periment, due to space constraints, we have conducted these experiments with
several other BC values, which all show the same result pattern.
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Fig.4: The predictions of the Allen-Cahn dynamics after inference. First row
shows the models’ predictions over space and time. The respective white columns
on the left side of the model predictions are the 15 simulation steps that were
used for inference and subtracted before the prediction. Second row shows the
predictions over z and u(x,t = 1), i.e. u in the last simulation step. Best models
were used for the plots.

5 Discussion

The aim of our first experiment (see Section 4.1) was to assess whether FINN,
DISTANA, and PhyDNet are able to learn the fixed and unknown Dirichlet
BC values of data generated by Burgers’ and Allen-Cahn equations. This was
achieved by setting the value of the BC as a learnable parameter to optimize
it along with the models’ weights during training. The results, as detailed in
Table 1, suggest two conclusions: First, all models can satisfactorily approximate
the equations by achieving error rates far below 10~!. Second, only FINN can
infer the BC values underlying the data accurately. Although DISTANA and
PhyDNet simulate the process with high accuracy, they apparently do not exhibit
an explainable and interpretable behavior. Instead, they treat the BC values in a
way that does not reflect their true values and physical meaning. This is different
in FINN, where the inferred BC value can be extracted and interpreted directly
from the model. This is of great value for real-world applications, where data are
given with an unknown BC, such as in weather forecasting or traffic forecasting
in a restricted simulation domain.

In the second experiment (see Section 4.2), we addressed the question of
whether the three models can infer an unknown BC value when they have already
been trained on a (set of) known BC values. Technically, this is a traditional
test for generalization. The results in Table 2 suggest that both DISTANA and
PhyDNet decently learn the effect of the different BC values on the data when
being trained on a range of BC values. Once the models are trained on one single
BC value only (c.f. Table 3), however, the inferred BC values of DISTANA and
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PhyDNet are far off the true values. This is different for FINN: although the test
error on Burgers’ could still be improved, FINN still determines the underlying
BC values in both cases accurately, even when trained on one single BC value
only.

Our main aim was to infer physically plausible and interpretable BC values.
Although FINN is a well tested model and it has been compared with several
models such as ConvLSTM, TCN, and CNN-NODE in [7], we applied FINN to
1D equations in this work. However, since the same principles underly higher
dimensional equations, we anticipate the applicability of the proposed method
to higher dimensional problems.

6 Conclusion

In a series of experiments, we found that the physics-aware finite volume neural
network (FINN) is the only model-—among DISTANA (a pure spatiotemporal
processing ML approach) and PhyDNet (another physics-aware model)—that
can determine an unknown boundary condition value of data generated with
two different PDEs with high accuracy. Once the correct BC values are found,
it can predict the equation depending on them with high precision. So far, the
universal pure ML models stay too general to solve the problem studied in this
work. State-of-the-art physics-aware networks (e.g. in [5,8]) are likewise not spe-
cific enough. Instead, this work suggests that a physically structured model that
can be considered as an application-specific inductive bias is indispensable and
should be paired with the learning abilities of neural networks. FINN integrates
these two aspects by implementing multiple feedforward modules and mathe-
matically composing them to satisfy physical constraints. This structure allows
FINN to determine unknown boundary condition values both during training
and inference, which, to the best of our knowledge, is a unique property under
physics-aware ML models.

In future work, we will investigate how different BC types (Dirichlet, peri-
odic, Neumann, etc.)—and not only their values—can be inferred from data.
Moreover, an adaptive and online inference scheme that can deal with dynami-
cally changing BC types and values is an exciting direction to further advance
the applicability of FINN to real-world problems. Finally, the further evaluation
of FINN on real-world data is imminent.
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